33500B and 33600A Series Trueform Waveform Generators

(20, 30, 80, 120 MHz)

- Built-in modulation and 17 popular waveforms
- Full bandwidth sine and square waves
- Lowest total harmonic distortion (THD) in its class
- One or two independent channels that can be coupled
- Trueform arbitrary waveform generation up to 1 GSa/s and 64 MSa

33500B and 33600A Series True form Function / Arbitrary Waveform Generators

- Easily generate the full range of signals you need for the most demanding measurements
- Test your devices with confidence that the waveform generator is outputting the signals you expect
- Select just the capabilities you need now, then upgrade easily when your needs change

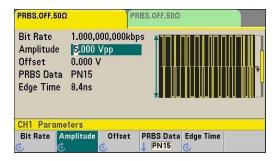
Features

The 33500B and 33600A Series True *form* Function / Arbitrary waveform generators offer a variety of capabilities you can't find anywhere else, and they are designed to help you accelerate your testing and get your project completed faster.

Features	Descriptions
Ease of Use	A large, color graphical display offers simultaneous parameter setup, signal viewing, and editing, along with a help system. Most standard waveforms and modulation, including signal summing, are built-in.
Signal Integrity	Trueform offers precise, low-noise signals with the lowest jitter and harmonic distortion in its class. Create full bandwidth sine and square waves with Trueform generators.
Trueform Arbs	Trueform arbs ensure every waveform point is accurately represented, with up to 64 MSamples per channel. Segment waveforms connect up to 512 segments to simplify waveform creation and save memory.
Pulse Generator	Create a single pulse, a burst of pulses, or a steady pulse train with high bandwidth, up to 100 MHz. Set leading and trailing edge times independently down to 2.9 ns.
2-Channel Coupling	Quickly synchronize the independent outputs to share the same frequency, amplitude, or both. The phase between the channels is also adjustable.
Connectivity	You can automate testing or download waveforms using LAN, GPIB, USB, and USB thumb drives. The BenchVue Function Generator Control and Automation app simplifies the creation of waveforms and the control of multiple instruments.
Upgradeability	Protect your investment. Configure your instrument for now and easily upgrade later.

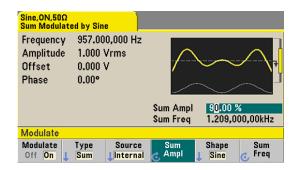
Ease of Use: All the Features You Expect

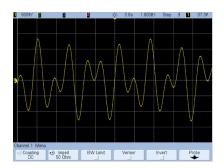
The 33500B and 33600A Series function/arbitrary waveform generators offer the standard signals and features you expect, such as modulation, sweep, and burst. However, it also provides features that give you the capabilities and flexibility to get your job done quickly, no matter how complex. An intuitive front-panel user interface, for example, can be quickly and easily relearned when your attention has been focused elsewhere. And that is just the beginning.



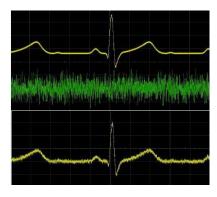
- Large, color, graphical display offers simultaneous parameter setup, signal viewing and editing for easy operation
- Two independent channels which can be coupled in amplitude and frequency
- Front-panel USB thumb drive port for file management
- Built-in help system
- LAN (LXI Core), USB, and optional GPIB connectivity for quick and easy connectivity to a PC or network
- External triggering

Modulation and built-in waveforms


17 arbitrary waveforms, including standard waveforms such as sine, square, ramp, PRBS, and Gaussian Noise, were built in. As well as specialty waveforms, such as cardiac, haversine, and Lorentz. Built-in modulations include AM, FM, PM FSK, and PWM.



Test your digital serial buses by streaming standard PRBS patterns—PN3 through PN32.

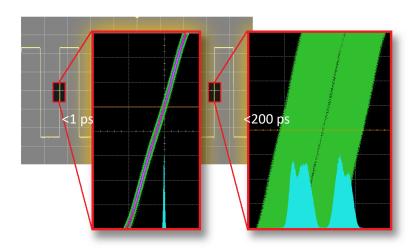

Waveforms summing and combining capability

Add noise to your signal for margin and distortion testing using only a single channel. You can create dual-tone multi-frequency signals without a dual-channel generator, preserving your budget for other test needs. On a two-channel model, you can sum and combine up to four signals.

The dual-tone signal created by summing waveforms using the modulation type "Sum."

Add variable BW noise to any signal.

Smartphone and tablet access to full documentation

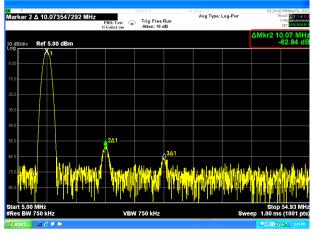

Need a quick answer? Get instant access to instrument documentation in seven different languages in smartphone-friendly WebHelp format. You can access all user documentation in the palm of your hand-no PC or hardcopy manuals required. Another feature you will not find in comparable function/arb generators.

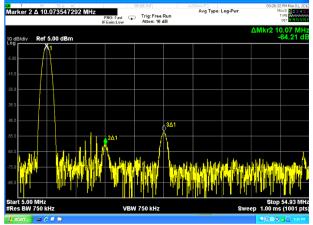
Signal Integrity: Outputting the Signals You Expect

If your generator introduces spurious signals or harmonics, you'll have difficulty producing reliable designs. To succeed, you must test with clean, precise, low-noise signals. Keysight Trueform function / arbitrary waveform generators offer the highest signal fidelity, so you can generate the exact waveforms you need for your most challenging measurements. You can be confident you are seeing your design's characteristics, and not that of your waveform generator, in your measurements.

Lowest jitter

With a jitter as low as 1 ps, True *form* function / arbitrary waveform generators offer exceptional edge stability. You can even use them as a system clock to time and trigger your other instruments. With better jitter performance, you can place edges more accurately, helping you reduce timing errors in your circuit design.




True *form* technology shown on the left significantly improves jitter performance compared to a traditional function generator shown on the right.

Lowest harmonic distortion

With a total harmonic distortion of just 0.03%, Trueform waveform generators offer up to 5x better fidelity than other generators. Clean, spurious-free signals don't introduce noise or artifacts. See your design's characteristics, not the waveform generator's, in your measurements.

True form function / arbitrary waveform generators offer the lowest total harmonic distortion (THD) in its class.

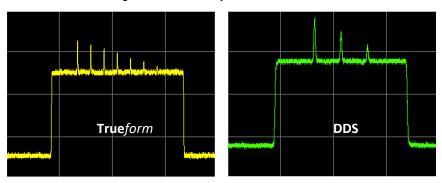
A typical direct digital synthesizer (DDS) generator has a higher noise floor and greater harmonics.

Reproduce lower-voltage output signals

Today's ultra-low-power products, such as pacemakers, hearing aids, and remote sensors, use very low voltages. With True *form* function / arbitrary waveform generators, you can create signals as low as 1 mVpp. That is a 10x lower voltage range than typical waveform generators.

Use the optional high-stability time base for even better accuracy

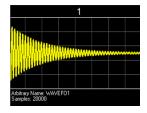
Improve time-based stability and frequency accuracy using the optional high-stability time base. The optional timebase offers 0.1 ppm stability, which is 20x more stable than the standard time base over one year.

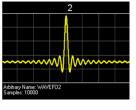


Trueform Arbs: Generating a Full Range of Signals for the Most Demanding Requirements

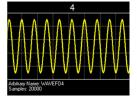
Trueform function / arbitrary waveform generators use a technology that plays every point in your signal exactly as you designed it. That means testing your design's robustness; you can create a specific signal with noise, overshoots, spikes, and dropouts just where you need them.

Non aliasing

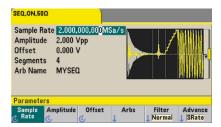

Define any waveform shape and length using the True*form* arbitrary waveform capability. Play your signals as defined, at your exact sample rate, without the chance of missing short-duration anomalies that are critical for testing device reliability.



While DDS technology may skip points at higher frequencies, Trueform never skips points and is always anti-aliased.


Waveform sequencing

Waveform sequencing lets you create multiple configured waveforms with several common segments and lets you build long, complex waveforms using minimal instrument memory.



Sequence of desired signals.

Waveform generator display of the desired sequence.

Standard deep memory

If you want to test your design with long, complex waveforms with various anomalies, you need to ensure your waveform generator has sufficient memory. The 33500B and 33600A Series come standard with 1 M Samples and 4 M Samples deep memory respectively. Typical DDS generators offer only a fraction of that capacity. In addition, higher memory options up to 64 MSamples are available to handle your most complex waveforms.

How does Keysight get such revolutionary advances over previous generation DDS signal generation?

As with any technology, DDS has its limitations. Engineers with exacting requirements have had to either work around the compromised performance or spend up to 5 times more for a highend, point-per-clock waveform generator.

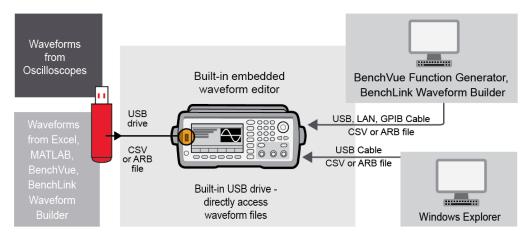
Keysight's Trueform technology offers an alternative that blends the best of DDS and point-per-clock architectures, giving you the benefits of both without the limitations of either. Trueform technology uses an exclusive digital sampling technique that delivers unmatched performance at the same low price you are accustomed to with DDS.

You can find a detailed comparison of DDS and Trueform technology in the Technical Overview- Trueform Waveform Generation Technology

Signal integrity improvements of Trueform technology over DDS

	DDS: Traditional 25 MHz waveform generator	Trueform: Keysight 20 MHz and 30 MHz waveform generators	DDS: Traditional 100 MHz waveform generator	Trueform: Keysight 80 MHz and 120 MHz waveform generators	Improvements
Edge jitter	< 500 ps	< 40 ps	< 200 ps	< 1 ps	12x to 200x better
Custom waveform replication	Skips waveform points	100%-point coverage	Skips waveform points	100%-point coverage	Exact waveform replication
Total harmonic distortion	0.2%	0.04%	0.2%	0.03%	Up to 5x better
Anti-alias filtering	Must provide externally	Always anti-aliased	Must provide externally	Always anti-aliased	No anti-aliasing artifacts
Sequenced arb	Not possible	Standard	Not possible	Standard	Easy creation of complex waveform sequences

Pulse generator with fast edge times


Create pulses up to 100 MHz with the True*form* function / arbitrary waveform generators. Most DDS-based generators offer reduced bandwidth when generating pulses. True*form* waveform generators produce higher harmonic content, allowing for rapid transitions. Like a dedicated pulse generator, edge times can be set independently down to 2.9 ns. which is twice as fast as a typical function generator.

Channel coupling with baseband generation capability

Channel coupling simplifies the operation of a two-channel function generator. Both channels can be controlled with a single parameter for phase, amplitude, or frequency, making it simple to create differential or tracking signals. In addition, IQ signal generation has now been made easier with the IQ Baseband Signal Player for True form function / arbitrary waveform generators.

The IQ Baseband Signal Player configures and controls both channels as if they were a single channel. It also keeps the phase of each channel in the nominal IQ range. Quickly, go from simulation to signal generation to test your RF component or system design.

Connectivity: Flexibility in creating and playing waveforms

Multiple interfaces provide flexibility for creating and downloading waveforms.

Keysight BenchVue Software

Keysight BenchVue software for the PC makes it simple to connect, control instruments, and automate test sequences. With just a few clicks, you can quickly move past the test development phase and access results faster.

Note: We have fully transitioned the BenchVue Included license that comes with your instrument purchase to the BenchVue Basic App, making it easier for you to access and use BenchVue software. You can now download PathWave BenchVue Basic for free. PathWave BenchVue Basic apps provide unlimited access and features that are available in the version just before the latest version of BenchVue software. Visit www.keysight.com/find/BVBasic for more information.

BV0002B Function Generator Control and Automation App

You can purchase BV0002B separately or get the basic version for free at www.keysight.com/find/BVBasic.

- Point and click to control your function generators
- Advanced waveform creation and editing capability with 33503B Keysight BenchLink Waveform Builder Pro (purchased separately)
- Load custom arbitrary waveforms from files
- Drag-and-drop measured traces easily from the BenchVue Oscilloscope App
- Rapidly build custom test sequences with Test Flow
- · Access deeper instrument controls with Command Expert integration
- Intuitively control, automate, and simplify testing with your function generators and hundreds of other Keysight instruments

33503B Keysight BenchLink Waveform Builder Pro software

Purchase 33503B separately to easily create custom waveforms with advanced waveform creation and editing software. Visit www.keysight.com/find/33503 for more information.

- Library of signals
- · Freeform draw and edit
- · Equation editor, waveform math
- · Apply filters and windowing functions
- · Create waveform sequences

Download BenchVue software at www.keysight.com/find/benchvue_apps.

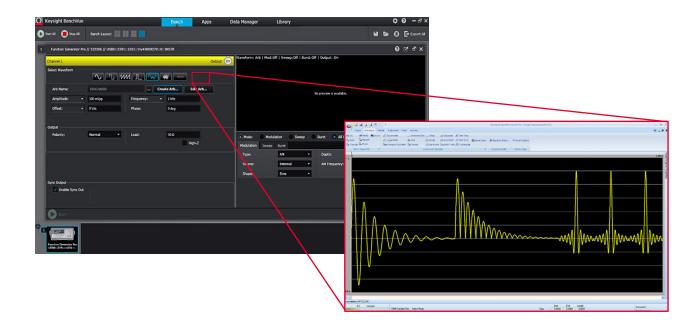


Figure 1. Design and build arbitrary waveforms with BenchLink Waveform Builder Pro

Select the Capabilities You Need Now, Then Upgrade Easily When Your Needs Change

With most waveform generators, you get what you pay for when you buy your instrument. However, with the 33500B and 33600A Series function / arbitrary waveform generators, there are four different models to choose from. You can purchase the capability you need now and upgrade later when your project needs to change. Your investment in test equipment is protected. If you need deeper memory to generate more complex signals, you can easily add the capability later with software upgrades. And there's no price penalty for adding the capability later.

Configuration Guide

Step 1. Choose your bandwidth and channel count

Bandwidth	20 MHz	20 MHz	30 MHz	30 MHz	80 MHz	80MHz	120 MHz	120 MHz
Number of channels	1	2	1	2	1	2	1	2
Waveform generator	33509B	33510B	33519B	33520B	-	-	-	-
Waveform generator with arbitrary capability	33511B	33512B	33521B	33522B	33611A	33612A	33621A	33622A

Step 2. Tailor your waveform generator for more demanding applications

Application	Order option
Additional memory for long waveforms	MEM (only available on models with arbitrary)
Security features with NISPOM	SEC
OCX0-high stability timebase	OCX

Step 3. Upgrade your waveform generator in the future

Upgrade desired	Order upgrade option (for 33500B series)	Order upgrade option (for 33600A series)
Increase bandwidth	335BW1U on 1-channel models (up to 30 MHz)	336BW1U on 1-channel models (up to 120 MHz)
	335BW2U on 2-channel models (up to 30 MHz)	336BW2U on 2-channel models (up to 120 MHz)
Add arbitrary	335ARB1U on 1-channel models	
waveform capability	335ARB2U on 2-channel models	
Increase arbitrary memory	335MEM1U on 1-channel arb models (inc to 16M)	336MEM1U on 1-channel models (inc to 64M)
	335MEM2U on 2-channel arb models (inc to 16M)	336MEM2U on 2-channel models (inc to 64M)
Add NISPOM and file security	335SECU	336SECU
Add high stability timebase	33500U-OCX (must return to Keysight) ³	33600U-OCX (must return to Keysight) ³
Add GPIB		3446GPBU (customer installable)

Step 4. Add on optional accessories

Optional accessories	Description
34162A	Accessory pouch
1CM124A	Rackmount kit with a filler panel
1CM107A	2U dual flange kit (mounting two instruments side-by-side)
34194A	Dual Lock link kit (to connect the two units together)

- A 1-channel generator cannot be "upgraded" to a 2-channel generator.
- GPIB option is included as standard for 33500B Series.
 This option upgrade must be returned to Keysight for installation and calibration.
 Option IQP is included as standard in 33512B/22B and 33612A/22A models.

Specifications

Unless otherwise stated, all specifications apply with a $50-\Omega$ resistive load and automatic amplitude range selection enabled.

Instrument characteristics

Models and options

Madalaumhar	33509B	33510B	33519B	33520B	33611A	33612A	33621A	33622A	
Model number	33511B	33512B	33521B	33522B					
Maximum frequency	20 MHz	20 MHz	30 MHz	30 MHz	80 MHz	80 MHz	120 MHz	120 MHz	
Number of channels	1	2	1	2	1	2	1	2	
Option MEM	Increase ark	waveform mer annel ¹⁵	nory to		Increase arb waveform memory from 4 MSa/Channel to 64 MSa/Channel				
Option SEC	Enables NIS	Enables NISPOM and file security							
Option OCX	Oven-contro	Oven-controlled frequency reference for improved stability, jitter, and phase noise							
Waveforms									
Standard	Sine, Square	e, Ramp, Pulse,	Triangle, Gauss	ian Noise, PRBS	(Pseudorandom	Binary Sequent	ce), DC		
Built-in arbitrary 20		ponential Fall, E Negative Ramp,		, Gaussian Pulse	e, Haversine, Lo	orentz,			
User-defined arbitrary 20	Up to 1 MSa sequencing	Up to 1 MSa (16 MSa with Option MEM) with multi-segment				t Up to 4 MSa (64 MSa with Option MEM) with multi- segment sequencing			
Operating modes and mod	ulation types				·	-			
Operating modes	Continuous,	Modulate, Fred	uency Sweep, (Counted Burst, G	ated Burst				
Modulation types	AM FM PM	AM, FM, PM, FSK, BPSK, PWM, Sum (carrier + modulation)							

Footnotes referenced on page 23

Waveform characteristics

Sine

Trueform Series	33500B models	33600	OA models		
Frequency range	V _{OUT} ≤ 10 V _{pp} : 1 μHz to 20 MHz or 30 MHz, 1-μHz resolution	$V_{OUT} \le 10 \text{ V}_{pp}$: 1 μ Hz to 60 MHz, 1- μ Hz resolution $V_{OUT} \le 8 \text{ V}_{pp}$: 1 μ Hz to 80 MHz, 1- μ Hz resolution			
		V _{OUT} ≤ 4 V _{pp} . I μHz to 120 MHz, I-μHz res			
	$V_{OUT} \le 10 V_{pp}$	$V_{OUT} = 1 V_{pp}$			
		f _{OUT} < 10 MHz: ± 0.10 dB f _{OUT} 10 MHz to 60 MHz: ± 0.20) dB		
Amplitude flatness	f _{OUT} < 100 kHz: ± 0.10 dB	fout 60 MHz to 80 MHz: ± 0.30			
(spec) ^{2, 3, 17}	f _{OUT} 100 kHz to 5 MHz: ± 0.15 dB	f _{OUT} 80 MHz to 120 MHz ¹ : ± 0.	40 dB		
(relative to 1 kHz)	fout 5 MHz to 20 MHz: ± 0.30 dB	V _{OUT} > 1 V _{pp}			
,	f _{OUT} 20 MHz to 30 MHz ¹⁶ : ± 0.40 dB	f _{OUT} < 10 MHz: ± 0.10 dB	- ID		
		four 10 MHz to 60 MHz: ± 0.25 four 60 MHz to 80 MHz: ± 0.40			
		fout 80 MHz to 120 MHz ¹ : ± 0.40			
	V _{OUT} ≤ 10 V _{pp}	$V_{OUT} = 1 V_{pp}$.00 db		
	νουτ = 10 τρρ	fouт < 1 MHz: -70 dBc			
		f _{OUT} = 1 MHz to 10 MHz: -61 d	Вс		
		fout > 10 MHz: -43 dBc			
		$V_{OUT} = 4 V_{pp}$			
		f _{OUT} < 1 MHz: -69 dBc			
	f_{OUT} < 20 kHz: < -70 dBc	fout = 1 MHz to 10 MHz: -58 d	Bc		
Harmonic	f _{OUT} 20 kHz to 100 kHz: < -65 dBc	fout > 10 MHz: -36 dBc			
distortion (typ) 2, 17	f _{OUT} 100 kHz to 1 MHz: < -50 dBc	$V_{OUT} = 8 V_{pp}$			
	f _{OUT} 1 MHz to 20 MHz: < -40 dBc f _{OUT} 20 MHz to 30 MHz ¹⁶ : < -35 dBc	fout < 1 MHz: -68 dBc fout = 1 MHz to 10 MHz: -54 dBc			
	1001 20 WHZ to 30 WHZ ". \ -33 dbc	fout > 10 MHz: -40 dBc			
		$V_{OUT} = 10 V_{DD}$			
		fouт < 1 MHz: -67 dBc			
		fout = 1 MHz to 10 MHz: -51 dBc			
		fout > 10 MHz: -39 dBc			
	$V_{OUT} \le 10 V_{pp}$	$V_{OUT} = 1 V_{pp}$			
THD (typ) ²		f _{OUT} = 20 Hz to 20 kHz: 0.03%			
(1) (1)	f _{OUT} = 20 Hz to 20 kHz: <0.04%	V _{OUT} > 1 V _{pp}			
	Olandari 1 75 dB. '' 00 dB/dd	f _{OUT} = 20 Hz to 20 kHz: 0.04%			
	Standard < -75 dBc, increasing 20 dB/decade above 2 MHz				
Non-harmonic	Option OCX: < -75 dBc increasing 20 dB/decade	f _{OUT} < 10 MHz: -80 dBc			
suprious (typ) ^{2, 4, 17}	above 10 MHz	f _{OUT} = 10 MHz to 60 MHz: -75 dBc			
	(or < -100 dBm, whichever is greater, below	f _{OUT} > 60 MHz: -70 dBc			
	500 MHz)				
	Standard	Standard (80 MHz)	Standard (120 MHz) 1		
		100-Hz offset: -105 dBc/Hz	100-Hz offset: -101 dBc/Hz		
	1-kHz offset: -105 dBc/Hz	1-kHz offset: -116 dBc/Hz	1-kHz offset: -112 dBc/Hz		
	10-kHz offset: -115 dBc/Hz 100-kHz offset: -125 dBc/Hz	10-kHz offset: -122 dBc/Hz 100-kHz offset: -129 dBc/Hz	10-kHz offset: -118 dBc/Hz 100-kHz offset: -125 dBc/Hz		
Phase noise (SSB) (typ) 5					
	Opt OCX	Opt OCX (80 MHz)	Opt OCX (120 MHz) ¹ 100-Hz offset: -110 dBc/Hz		
	1-kHz offset: -110 dBc/Hz	100-Hz offset: -114 dBc/Hz 1-kHz offset: -122 dBc/Hz	1-kHz offset: -110 dBc/Hz		
	10-kHz offset: -115 dBc/Hz	10-kHz offset: -125 dBc/Hz	10-kHz offset: -121 dBc/Hz		
	100-kHz offset: -135 dBc/Hz	100-kHz offset: -131 dBc/Hz	100-kHz offset: -127 dBc/Hz		
	Square and pulse				
		VOUT ≤ 10 Vpp			
Frequency ranges	VOUT ≤ 10 Vpp	1 μHz to 50 MHz, 1-μHz reso	lution		
i requericy rariges	1 μHz to 20 MHz or 30 MHz, 1-μHz resolution	VOUT ≤ 4 Vpp			
		1 μHz to 100 MHz, 1-μHz res	olution ¹		
Rise and fall times (nom)	VOUT ≤ 10 Vpp	VOUT ≤ 4 Vpp			
	Square: 8.4 ns, fixed	Square: 2.9 ns			

Sine

Pulse: 8.4 ns to 1 µs, independently variable,				
100-ps resolution	Pulse: 2.9 ns to 10 µs, independently variable, 100-ps resolution			
100-ps resolution	<u>'</u>			
	VOUT > 4 Vpp			
	Square: 4.0 ns			
	Pulse: 3.3 ns to 10 µs, independently variable,			
	100-ps resolution			
VOUT ≤ 10 Vpp	VOUT ≤ 4 Vpp			
	Square: < 4%			
	Pulse, min edge: < 4%			
	Pulse, 4-ns edge: < 2%			
	Pulse, ≥ 6-ns edge: < 2%			
< 2%	VOUT > 4 Vpp			
	Square: < 4%			
	Pulse, min edge: < 7%			
	Pulse, 4-ns edge: < 4%			
	Pulse, ≥ 6-ns edge: < 2%			
0.01% to 99.99% 0.01% resolution	1 0.00, = 0 110 00g0. = 270			
	VOUT ≤ 4 Vpp			
νοστ = το γρρ	5 ns minimum (high or low), 1-ps resolution			
16 no minimum 100 no recolution	VOUT > 4 Vpp			
to as minimum, 100-ps resolution				
	8 ns minimum (high or low), 1-ps resolution			
	10 Hz to 40 MHz band Standard: < 1 ps			
Standard: < 40 ps	Opt OCX: < 0.5 ps			
Ramp and Triangle	e			
1 μHz to 200 kHz, 1-μHz resolution	1 μHz to 800 kHz, 1-μHz resolution			
Odussian Noise	V _{OUT} ≤ 10 V _{DD}			
	The state of the s			
V 40V	1 mHz to 60 MHz			
	VOUT ≤ 8 Vpp			
1 mHz to 20 MHz or 30 MHz	1 mHz to 80 MHz			
	$V_{OUT} \le 4 V_{pp}$			
	1 mHz to 120 MHz ¹			
4.6	4.6			
> 50 years	> 100 years			
Pseudorandom Binary Seque	ence (PRBS)			
$V_{OUT} \le 10 V_{pp}$	$V_{OUT} \le 10 V_{pp}$			
	1 mbps to 100 Mbps, 1-mbps resolution			
1 mbps to 50 Mbps 1-mbps resolution	V _{OUT} ≤ 4 V _{pp}			
opo to oo mapo, i mapo roooiution	1 mbps to 200 Mbps, 1-mbps resolution ¹			
2m 1 m = 7 0 11 15 20 22	2 ^m - 1, m = 3 to 32			
V _{OUT} ≤ TU V _{pp}	$V_{OUT} \le 4 V_{pp}$			
8.4 ns to 1 us variable 100-ps or	2.9 ns to 1 ms, independently variable, 100-ps resolution			
	$V_{OUT} > 4 V_{pp}$			
o digit robolidation	3.3 ns to 1 ms, independently variable, 100-ps resolution			
Arbitrary waveform	ns en			
8 Sa to 1 MSa per channel	32 Sa to 4 MSa per channel			
	· ·			
(16 MSa with opt MEM), in increments of 1 Sa	(64 MSa with opt MEM), in increments of 1 Sa			
(16 MSa with opt MEM), in increments of 1 Sa 20 MHz models:	(64 MSa with opt MEM), in increments of 1 Sa			
20 MHz models:				
20 MHz models: 1 μSa/s to 160 MSa/s, 1-μSa/s resolution	80 MHz models: 1 µSa/s to 660 MSa/s, 1-µSa/s resolution 8			
20 MHz models:				
	0.01% to 99.99%, 0.01% resolution VOUT ≤ 10 Vpp 16 ns minimum, 100-ps resolution 1 Hz to 20 MHz or 30 MHz band Standard: < 40 ps Ramp and Triangle 1 μHz to 200 kHz, 1-μHz resolution 0% to 100%, 0.1% resolution, (0% is negative reconstruction) < 0.05% from 5% to 95% of the signal amplitude Gaussian Noise Vout ≤ 10 Vpp 1 mHz to 20 MHz or 30 MHz 4.6 > 50 years Pseudorandom Binary Seque			

Footnotes referenced on page 23

Waveform filters

"Normal" (highest bandwidth, \sim 5% preshoot and overshoot), "Step" (lower bandwidth, \sim 0% preshoot and overshoot), or "Off" (transitions from point to point occur as quickly as possible)

Fraguency and time above to determine	Filter=	Filter=	Filter=	Filter=	Filter=	Filter=
Frequency and time characteristics	"Normal"	"Step"	"Off"	"Normal"	"Step"	"Off"
Bandwidth (-3 dB)(nom)	0.27 x (Sa rate)	0.13 x (Sa rate)	40 MHz	0.27 x (Sa rate)	0.13 x (Sa rate)	100 MHz
Rise and fall time (nom)	0.35/bandwidth (10 ns min)			0.35/bandwidth (3.5 ns min)	0.35/bandwidth (3.5 ns min)	3.5 ns
Jitter(rms) (meas) 8	< 5 ps	< 5 ps	< 40 ps	< 2 ps	< 1 ps	< 10 ps
Arb waveform sequencing 20						
Operation	more complex wav number of times, to event. Additionally,	eforms. Each sequence repeat indefinitely, to	ce step specif repeat until a ync output (M	bined into user defined ies whether to repeat the Trigger event occurs, carker) can be specified into volatile memory.	e associated segmen or to stop and wait for	t a certain a Trigger
Segment length	8 Sa to 1 MSa per MEM), in incremen	channel (16 MSa with ts of 1 Sa		Sa to 4 MSa per chanr otion MEM), in incremer		
Sequence length	1 to 512 steps			,.		
Segment repeat count	1 to 1x10 10, or infir	nite	1 1	to 1x10 6, or infinite		
General						
Connector	Front-panel BNC, s	hell and pin isolated fr	rom chassis (:	± 42 V maximum)		
Function	On, Off, or Inverted		,	,		
Output impedance (nom)	50 Ω					
Isolation				In are connected togethector shell or pin is ± 42		he instrument's
Overload protection	Output turns off aut indefinitely.	omatically when an ov	erload is app	lied. Instrument will tole	rate a short circuit to	ground
Amplitude						
Range ⁹		nto 50 Ω , 4-digit resol nto open circuit, 4-digi				
Units	Vpp, Vrms, or dBm	· ·				
Accuracy (at 1 kHz) (spec) 3,17	± (1% of setting in)	Vpp) ± (1 mVpp)				
Voltage limit function	User-definable max	imum and minimum v	oltage limits			
DC offset						
Range ¹⁸		C) into 50 Ω , 4-digit re Ω 0) into open circuit, 4		on		
Units	VDC	-,,	J			
Accuracy (spec) 3, 17	± (1% of Offset sett	ting) ± (0.25% of ampl	litude in Vpp)	± (2 mV)		
Frequency accuracy (spec)	•	· ·	.17			
	± (1 ppm of setting	+ 15 pHz), 1 year, 23	°C ± 5 °C			
Standard frequency reference		+ 15 pHz), 1 year, 0 °				
High stability frequency reference (Option OCX)		g + 15 pHz), 1 year, 0				

Footnotes referenced on page 23

Modulation, burst, and sweep capability

Carrier	AM	FM	PM	FSK	BPSK	PWM	Sum	Burst	Sweep
Sine and square		•	•	•	•		•		
Pulse	•		•			•		•	•
Ramp and triangle		•							
Gaussian noise								■ 10	
PRBS	•							•	
Single arbitrary 20			-						
Sequenced arbitrary 20	•								

Modulating signals

Carrier	Sine	Square	Ramp	Triangle	Noise	PRBS	Arbitrary ²⁰	External
Sine	-	-	•	•	-		•	
Square and pulse		-	•	•	•		•	•
Ramp and triangle	•	•	•	•	•		•	•
Gaussian noise	•	•	•	•			•	•
PRBS	•	•	•	•	•		•	•
Arbitrary 20	•	•	•	•	•	•		•

Legend

•	All models
	Only 33600A Series models

Modulation, burst, and sweep characteristics

Note: For all external modulation specifications, kindly refer to the Modulation input section for details.

Amplitude modulation (AM)			
Source	Internal or external (all models), or other channel (all 2-channel models)		
Туре	Full-Carrier or Double-Sideband Suppressed-Carrier (DSSC)		
Depth 3, 11	0% to 120%, 0.01% resolution		
Frequency modulation (FM) 12			
Source	Internal or external (all models), or other channel (all 2-channel models)		
	1 μHz to 15 MHz, 1-μHz resolution (all 33500 Series models)		
Deviation	1 μHz to 40 MHz, 1-μHz resolution (33611A/33612A)		
	1 µHz to 60 MHz, 1-µHz resolution (33621A/33622A)		
Phase modulation (PM)			
Source	Internal or external (all models), or other channel (all 2-channel models)		
Deviation	0° to 360°, 0.1° resolution		
Frequency-shift key modulation	on (FSK) 12		
Source	Internal timer or rear-panel connector		
Mark and space	Any frequency within the carrier signal's range		
Rate	≤1 MHz		
Binary phase-shift key modulation (BPSK)			
Source	Internal timer or rear-panel connector		
Phase shift	0° to 360°, 0.1° resolution		
Rate	≤1 MHz		

Dulas width madulatian (D)	N/AA\			
Pulse width modulation (PV				
Source	Internal or external (all models), or other channel (all 2-channel models)			
Deviation 6	0% to 100% of pulse width, 0.01% resolution			
Additive modulation (Sum)				
Source	Internal or external (all models), or other channel (all 2-channel models)			
Ratio 11	0% to 100% of carrier amplitude, 0.01% resolution			
Burst characteristics 10				
Туре	Counted or gated			
Counted burst operation	Each trigger event causes the instrument to produce from 1 to 108 or an "infinite" number of waveform cycles			
Gated burst operation	Instrument produces waveforms while the trigger is in the "on" state. For Gaussian Noise, waveform generation stops immediately when the trigger is in the "off" state. All other waveforms stop at the completion of a cycle; more than one cycle might elapse before generation stops.			
Start/stop phase 19	-360° to +360°, 0.1° resolution			
Trigger source	Internal timer or rear-panel connector			
Marker	Indicated by the trailing edge of the Sync pulse; adjustable to any cycle of the burst			
Sweep characteristics 12				
Туре	Linear, Logarithmic, or List (up to 128 user-defined frequencies)			
Operation	Linear and Logarithmic sweeps are characterized by a Sweep time (during which the frequency changes smoothly from Start to Stop), a Hold time (during which the frequency stays at the Stop frequency), and a Return time (during which the frequency changes smoothly from Stop to Start). Returns are always linear in the 33600A Series.			
Direction	Up (start freq < stop freq) or Down (start freq > stop freq)			
Sweep time				
	1 millisecond to 3,600 seconds, 1-ms resolution			
Linear	3,601 seconds to 250,000 seconds, 1-second resolution			
Logarithmic	1 millisecond to 500 seconds, 1-ms resolution			
Hold time	0 to 3,600 seconds, 1-ms resolution			
Return time	0 to 3,600 seconds, 1-ms resolution			
Trigger source 13, 14	Immediate (continuous), external (rear-panel connector), manual (front-panel button), bus or internal timer			
Marker	Indicated by the trailing edge of the Sync pulse; adjustable to any frequency between Start and Stop for Linear and Logarithmic types or any frequency in the list for List type.			
Internal timer for FSK, BPSI	K, burst, and sweep			
Danga	1 µs to 8,000 seconds, 6-digit or 8-ns resolution (33500B Series models)			
Range	1 µs to 4,000 seconds, 4-ns resolution (33600A Series models)			

Footnotes referenced on page 23

Two-channel characteristics (all 2-channel models)

Standard

Trueform Models	33500B Series, 2-channel models	33600A Series, 2-channel models		
Operating modes Independent, Coupled parameter(s), Combined (Ch 1 + Ch 2), Equal (Ch 1 = Ch 2), or Differential (Ch 1 = -Ch 2)				
Parameter coupling	None, Frequency (ratio or difference) and/or Amplitude and DC offset			
Relative Phase	0° to 360°, 0.1° resolution			
Channel-to-channel skew (typ) (Both channels configured identically)	< 200 ps			
Crosstalk (typ)	< –85 dB			

IQ player characteristics (33512B, 33522B, 33612A, 33622A)

IQ player characteristics

Trueform Series	33512B/33522B	2B/33522B 33612A/33622A		
Balance adjusts				
Operation	This enables a two-channel model with arbitrary waveform capability to function as a baseband IQ (quadrature modulation) source. Programmable impairments include amplitude imbalance, DC offset difference, and channel-to-channel time skew.			
Channel-to-channel amplitude balance 11	-30% to +30%, 0.001% resolution			
Channel-to-channel DC	\pm (5 VDC - peak AC), 0.1-mV resolution into 50 Ω			
offset difference	± (10 VDC - peak AC), 0.2-mV resolution into open circuit			
Channel-to-channel time skew	-4 ns to +4 ns, 10-ps resolution	-1 ns to +1 ns, 10-ps resolution		
Display views	Voltage versus Time or Constellation diagram (Channel 1 versus Channel 2)			

Note: IQ player is now a standard option on 33512B/22B and 33612A/22A models. Footnotes referenced on page 23 $\,$

Sync/Marker output

Trueform Series	33500B Series	33600A Series		
Sync/marker output				
Connector	Front-panel BNC, shell, and pin isola	Front-panel BNC, shell, and pin isolated from chassis (± 42 V maximum)		
Functions	Sync, Sweep Marker, Burst Marker,	Sync, Sweep Marker, Burst Marker, Arbitrary Waveform Marker, or Off		
Assignment	Channel 1 or Channel 2			
Polarity	Normal or Inverted	Normal or Inverted		
Output level (nom)	0 to +1.5 V into 50 Ω ; 0 to +3.0 V in	0 to +1.5 V into 50 Ω; 0 to +3.0 V into high impedance		
Output impedance (nom)	50 Ω	50 Ω		
Minimum pulse width (nom)	16 ns	5 ns		

Modulation input

Trueform Series	33500B Series	33600A Series		
Modulating input				
Connector	Rear-panel BNC, shell, and pin isola	Rear-panel BNC, shell, and pin isolated from chassis (± 42 V maximum)		
Assignment	Channel 1, Channel 2, or both			
Voltage level (nom)	± 5 V full-scale	± 1 V or ± 5 V full-scale, selectable		
Input Impedance (nom)	5 kΩ			
Bandwidth (-3 dB) (typ)	0 Hz to 100 kHz	0 Hz to 100 kHz		

External trigger/gate input/output

Trueform Series	33500B Series 33600A Series			
General characteristics				
Connector	Rear-panel BNC, chassis-referenced (functions	as Input or Output)		
Assignment	Input: Channel 1, Channel 2, or both			
Assignment	Output: Channel 1 or Channel 2			
Polarity	Positive or Negative Slope			
Maximum rate	1 MHz			
Input characteristics				
Threshold voltage (nom)	(Output level setting)/2			
Impedance (nom)	10 kΩ, DC-coupled			
Minimum pulse width	16 ns	100 ns		
Variable Trigger Delay	0 to 1,000 s, 4-ns resolution	0 to 1,000 s, 1-ns resolution		
Latency (typ) 1	< 135 ns with trigger delay set to zero	< 140 ns with trigger delay set to zero		
Jitter (typ)	< 2.5 ns, rms < 320 ps, rms			
Output characteristics				
Output voltage (nom)				
Low level	0 V			
Ligh lovel	3 Vpp (nom) into open circuit	0.9 V to 3.8 V into open circuit		
High level	1.5 Vpp (nom) into 50 Ω	0.1 V resolution		
Impedance (nom)	50 Ω	50 Ω		
Duty cycle (nom)	50%			
Fan-out	Up to four Keysight Trueform waveform generators			

Note: 1. Only apply to 1kHz and above

External frequency reference input/output

Trueform Series	33500B Series	33600A Series
Input characteristics		
Connector	Rear-panel BNC, shell, and pin isola	ed from chassis and all other connectors (± 42 V max.)
Eroguanov rango	Standard: 10 MHz ± 20 Hz	
Frequency range	Option OCX: 10 MHz ± 1 Hz	
Voltage	200 mVpp to 5 Vpp	
Impedance	1 kΩ 20 pF, AC-coupled	
Lock time (typ)	<2s	
Output characteristics		
Connector	Rear-panel BNC, chassis-referenced	
Frequency (nom)	10 MHz	
Level (nom)	0 dBm (632 mVpp) into 50 Ω	
Impedance (nom)	50 Ω	

Programming times

Trueform Series			33500B Serie	s			33600A Serie	es
Configuration changes (meas)	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB
Change function (meas)	5 ms	6 ms	5 ms	5 ms	29.2 ms	29.7 ms	29.4 ms	29.2 ms
Change frequency (meas)	2 ms	3 ms	2 ms	3 ms	2.7 ms	3.3 ms	2.8 ms	2.7 ms
Change amplitude (meas)	20 ms	20 ms	19 ms	22 ms	8.3 ms	9.0 ms	8.3 ms	8.3 ms
Select arbitrary waveform (16 k samples) (meas)	9 ms	11 ms	9 ms	9 ms	12.7 ms	13.9 ms	13.1 ms	12.6 ms
Arbitrary waveform download speed to volatile	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB
4k samples (binary transfer) (meas)	6 ms	18 ms	8 ms	39 ms	6.4 ms	13.2 ms	6.6 ms	52.3 ms
1M samples (binary transfer) (meas)	1.3 s	2.6 s	13 s	9.1 s	1.26 s	2.40 s	1.25 s	12.3 s

Memory

Trueform Series	33500B Series	33600A Series		
Arbitrary waveform				
Volatile	1 MSa/channel (16 MSa/channel with Option MEM). 512 sequence steps per channel	4 MSa/channel (64 MSa/channel with Option MEM).512 sequence steps per channel		
Non-volatile	64 MB in file system (~32 MSa of arbitrary waveform records)	970 MB in file system (~485 MSa of arbitrary waveform records)		
Instrument state				
Store/recall	User-defined instrument states (with user-defined names in the	file system)		
Power-On state	Default settings or state at power-off, selectable			
USB file system				
Front-panel port	USB 2.0 high-speed mass storage class (MSC) device			
Capability	Read or write instrument configuration settings, instrument states, arbitrary waveform, and sequence files			
Speed (nom)	10 MB/s			

General characteristics

Trueform Series	33500B Series 33600A Series				
Computer interfaces					
	10/100Base-T (Sockets & VXI-11 protocols)				
LXI-C (rev1.3)	USB 2.0 (USB-TMC488 protocol)				
	GPIB/IEEE-488.1, IEEE-488.2				
Web user interface	Remote operation and monitoring				
Programming language	SCPI-1999, IEEE-488.2				
1 Togramming language	Keysight 33210A, 33220A and 33250A Series compatible				
Graphical display	4.3 inch color TFT, WQVGA (480x272) with LED backlight				
Real-time clock/calendar battery	CR-2032 coin type, replaceable, > 5-year life (typ)				
Mechanical					
	261.1 mm W x 103.8 mm H x 303.2 mm D (with bumpers in	stalled)			
Size (nom)	212.8 mm W x 88.3 mm H x 272.3 mm D (with bumpers removed)				
	2U x 1/2 rack width				
Weight (nom)	3.3 kg (7.2 lbs.)	3.5 kg (7.7 lbs.)			
Environmental					
Storage temperature	-40 °C to 70 °C				
Warm-up time	1 hour				
Operating environment	EN61010, pollution degree 2, indoor locations				
Operating temperature	0 °C to 55 °C				
Operating humidity	80% RH up to 40°C,				
	decreases linearly to 37.5% RH at 55°C, non-condensing				
Operating altitude	Up to 3,000 meters				
Regulatory					
	Refer to Declaration of Conformity for the latest revisions of	regulatory compliance at:			
	www.keysight.com/go/conformity				
	Acoustic noise: Sound pressure level (1-m free-field) (nom) 35 dB(A) at T _{AMBIENT} ≤ 28 °C				
Line power					
Line voltage	100 to 240 V ± 10%, 50/60 Hz				
	100 to 120 V ± 10%, 400 Hz				
Power consumption	< 45 W, < 130 VA	< 75 W, < 150 VA			

- Applies to 120 MHz models (33621A/22A) only.
- DC Offset set to zero.
- Add 1/10 of the specification per °C for operation at temperatures below 18 °C or above 28 °C.
- At low amplitude, non-harmonic spurious level is -100 dBm (typ).
- Measured with a Keysight E5052B signal source analyzer. Phase noise improves by 20 dB/decade as output frequency is decreased.
- Subject to pulse width limits.
- Measured with a Keysight E5052B signal source analyzer.

 Maximum sample rate with Filter "Off" in 160 MSa/s for 80 MHz models and 250 MSa/s for 120 MHz models.
- Maximum amplitude is less at high frequency for certain waveforms.
- Counted burst is not available for Gaussian Noise. 10.
- Subject to amplitude limits. 11.
- 12
- All frequency changes are phase-continuous.

 External trigger only for sweep time > 8,000 seconds.

 Measured with a Square or Pulse waveform, edge time set to minimum, and trigger delay set to zero. Trigger latency is generally greater for other instrument settings. For some waveforms, trigger latency is a function of output frequency.
- Only available on 33511B/12B/21B/22B models.
- 16. Only available on 33519B/20B/21B/22B models.
- 17. Auto range ON.
- 18. Output noise is typically 20 dB lower when (DC + Peak AC) < 320 mV (into 50 Ω) or 640 mV (into open circuit).
- 19. Limited to arbitrary waveforms that are < 1 million points, phase resolution limited by number of points in arbitrary waveforms
- 20. Only applies to 33511B/12B/21B/22B and 33611A/12A/21A/22A models.

Definitions

Specification (spec)

The warranted performance of a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 0 to 55 °C and after a 1-hour warm-up period. All specifications account for the effects of measurement and calibration-source uncertainties and were created in compliance with ISO-17025 methods. Data published in this document are specifications (spec) only where specifically indicated.

Typical (typ)

The characteristic performance that 80% or more of manufactured instruments will meet. This data is not warranted, does not include measurement or calibration-source uncertainty, and is valid only at room temperature (approximately 23 °C).

Nominal (nom)

The mean or average characteristic performance, or the value of an attribute that is determined by design such as a connector type, physical dimension, or operating speed. This data is not warranted and is measured at room temperature (approximately 23 °C).

Measured (meas)

An attribute measured during product development for the purpose of communicating expected performance. This data is not warranted and is measured at room temperature (approximately 23°C).

